CLINICAL MEET - DEPT OF NEPHROLOGY

OXALATE NEPHROPATHY WITH PROGRESSION TO END STAGE RENAL DISEASE

Dr D.Y.PATIL, MEDICAL COLLEGE AND RESEARCH CENTRE, PIMPRI, PUNE.

Dr Abhijit. S. Chavan

DM Nephrology Resident, II year

- ► A 30 yr old gentleman, a farmer by occupation presented to the OPD with complaints of
 - 1. diarrhoea since 2 years,
 - 2. weight loss (upto 12 kgs in 1 year)
 - 3. increased episodes of loose stools since 1 month
 - 4. nausea and vomiting since 1 month
 - 5. decreased urine output since 1 month

- ► No history of
- Fever
- urinary tract symptoms
- renal calculus
- long term NSAID use or parallel therapy

-Few months prior to admission,

patient had started a diet regimen containing spinach and lemon grass in excess quantities twice a day, which he consumed for a month.

-He is a k/c/o Diabetes Mellitus since 1 year

-no other comorbidities.

Clinical examination

- ► Conscious ,co-operative, oriented to time place person
- \blacktriangleright Wt 54 kg (loss of 12 kg in 1 year)
- ► BMI-17.6 kg/m²
- signs of dehydration (tongue-dry, loss of skin turgor)
- pulse-108 beats/min, regular
- ▶ a blood pressure of 92/60 mmHg.
- Peripheral pulses- feeble
- ► S/E –
- ► CVS-S1S2 RS-AEBE PA-soft CNS- Pt conscious oriented

Investigations

- ► Hb 9.1g/dl
- ► WBC $6.9 \times 103/\mu l$
- ▶ Plt-1.66 lacs
- ▶ blood urea- 192 mg/dl
- ▶ serum creatinine-11.66 mg/dl
- $(sr creat 2.8 mg/dl \ 2 months \ ago)$
- ► serum Na 146 mmol/l
- serum K 3.8
- ► Chloride 98mmol/l
- corrected calcium 7.8
- ► Phosphorus 5.7

- SGOT/SGPT- 20/19u/l
- ALP-188 u/l
- serum albumin-3.2
- serum globulin-3.1
- ph 7.28
- hco3 11.9
- pco2 31
- pO2 46

- serum Amylase -90 u/l
- ► sr lipase-110 u/l,

- ▶ Urinalysis –
- o ph-6.84,
- o proteinuria 1+,
- o hyaline casts, no RBCs

- ▶ Ultrasound of the abdomen pelvis
 - right kidney of 8.5*4.3 cm (raised Echogenicity and CMD poorly maintained)
 - left kidney of 8.7*4.7 cm (raised Echogenicity and CMD poorly maintained)
 - No evidence of calcifications / renal calculi

AUTOIMMUNE PROFILE

- ► C3-101 mg/dl
- ► C4- 37mg/dl,
- ► c-ANCA- negative
- ▶ p-ANCA-negative
- ► Anti-GBM-negative,
- ► ANA by IF negative
- ► ANA Blot-negative) and
- serum protein electrophoresis normal
- ▶ free light chain assay normal.

To Summarize

► Male in his 30s

▶ Type 2 Diabetes Mellitus

Progressing Renal Failure

▶ Negative autoimmune workup

▶ Features of Malabsorption syndrome

Renal Biopsy

▶ <u>Light Microscopy</u> –

▶ Glomerulus: 12 glomeruli seen. 50% of glomeruli were sclerosed.

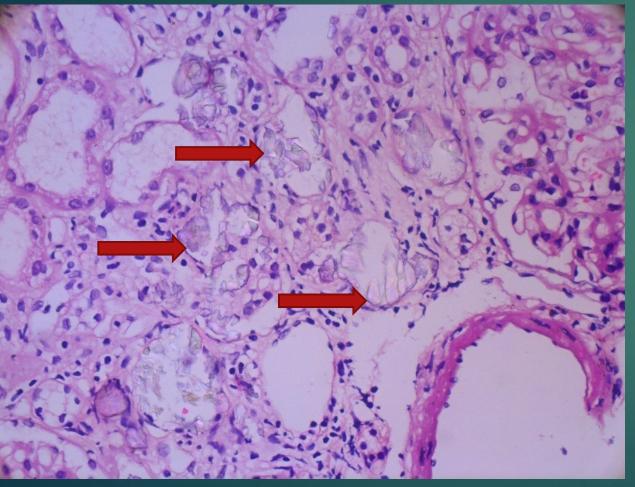
► The tubulo-interstitial compartment:

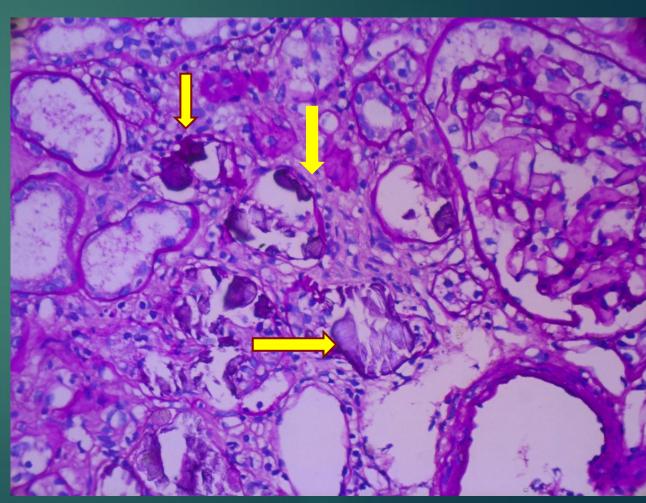
-foci of tubular damage, deposition of **translucent crystals of different shapes.** predominantly intra-luminal with few intracellular and focal interstitial.

-mild interstitial inflammation with 40% of interstitial fibrosis.

Renal biopsy

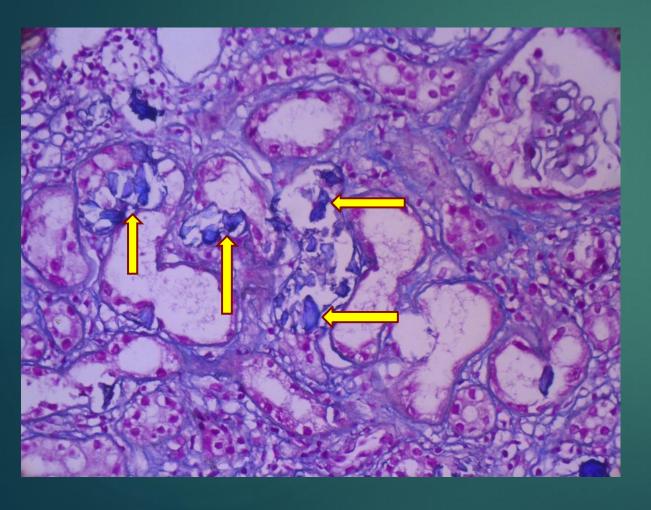
▶ Under polarized light, the deposits appeared strongly **birefringent** consistent with **calcium oxalate crystals**.

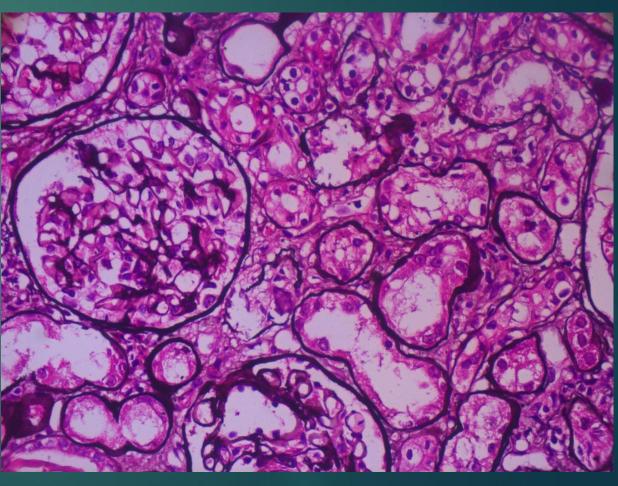

▶ Blood vessels appeared unremarkable.


► The immunofluorescence was negative

HISTOPATHOLOGY- Light Microscopy

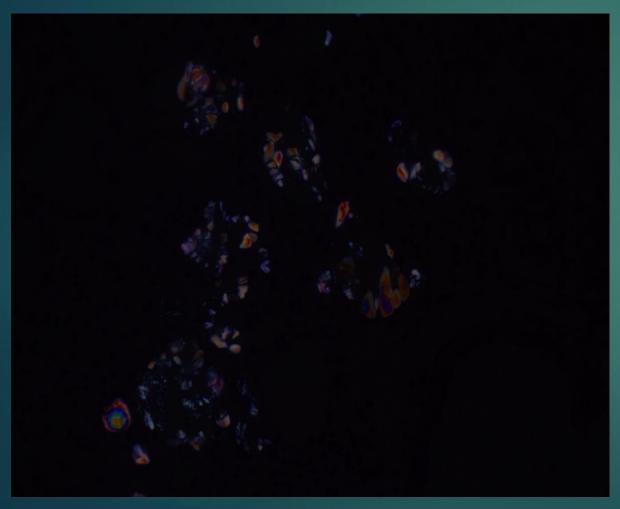
H & E Stain





HISTOPATHOLOGY- Light Microscopy

Masson's Trichrome stain


Silver Methylamine stain

Polarising Light -

strongly birefringence consistent with calcium oxalate crystals

- ▶ 24 hr urine for volume of 400ml/24 hrs
- \circ Oxalate 45 mg/24 hrs
- o citrate 98.4 mg/24 hrs
- o Calcium 220mg/24hrs
- stool was positive for fat globules,
- stool culture- no growth
- Colonoscopy-normal colonoscopy study
- fundus examination- normal

CONCLUSION

► A case of Oxalate Nephropathy presenting as

- Acute on Chronic Kidney disease

- associated with a possibility of underlying Malabsorption Syndrome
- with a background of excessive intake of Oxalate rich foods and

- intravascular volume depletion.

TREATMENT

- ► Hydration status restored.
- Hemodialysis initiated
- ▶ Permanent cuffed Tunnelled catheter secured as patient required maintenance hemodialysis
- ▶ Dietary measures include a low-oxalate, low-fat, and normal calcium diet.
- ► Calcium supplements to reduce the bioavailability of intestinal oxalate and its absorption
- ▶ Patient counselled regarding AV fistula creation and Renal Transplant .

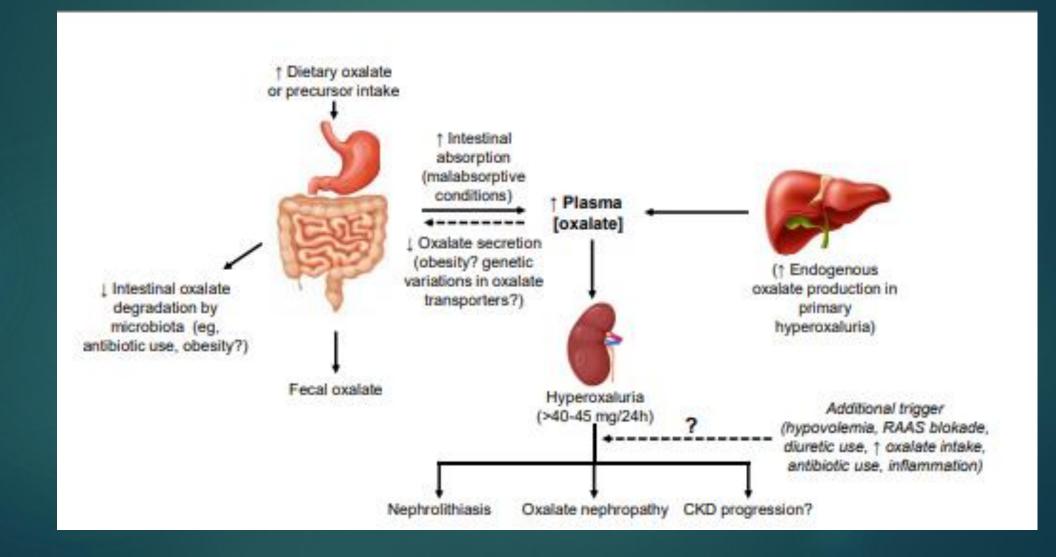
DISCUSSION

Definition – Oxalate Nephropathy

- ▶ Progressive kidney disease.
- ▶ Deposition of calcium oxalate crystals (birefringent on polarized light) within tubular epithelial cells, tubular lumens, and less frequently in the interstitium, associated with tubular injury and interstitial nephritis.
- ► Exclusion of other causes of kidney disease (apart from nonspecific microvascular lesions and/or diabetes associated glomerular lesions).

▶ A hyperoxaluria enabling-condition should be identified.

DISCUSSION


► The etiologies of oxalate nephropathy are divided into primary and secondary hyperoxaluria.

Primary hyperoxaluria is a rare autosomal recessive inherited metabolic disorder which leads to an increase in endogenous oxalate synthesis resulting in increased urinary oxalate excretion.

► Secondary hyperoxaluria is due to –

- o increased intestinal oxalate absorption,
- o excessive dietary oxalate intake or
- o excessive intake of oxalate precursors.

Pathophysiology

▶ Malabsorption syndromes lead to increased oxalate absorption by

- excessive non-absorbed fatty acid chelates free calcium

- increased free oxalate that will be reabsorbed and excreted by the kidney;

- fatty acids and dihydroxyl bile acids cause an increase in the permeability of the intestinal mucosa to oxalate

- This excess of oxalate urinary excretion may lead to either acute or chronic oxalate nephropathy.

▶ Enteric hyperoxaluria due to malabsorption is principally caused by

- o inflammatory bowel disease,
- o jejuno-ileal bypass,
- short bowel syndrome,
- o pancreatic insufficiency or
- o alteration of gut microbiota (oxalate degrading bacteria).

> Secondary oxalate nephropathy has also been described in-

- ethylene glycol toxicity and
- excessive ingestion of vitamin C.
- excessive intake of plant-based foods high in oxalate, including the juicing of certain vegetables and fruits (Spinach, berries, dried figs, cocoa, beets, orange or lemon peel, black tea)

- precipitating factors
- acute dehydration,
- diuretic use,
- antibiotic use, or
- high dietary oxalate intake
- RAAS blocker use

- ► Clinical presentation varies across the spectrum of
- AKI,
- AKI on CKD, and
- CKD.
- Kidney biopsy shows
 - Crystals shown as birefringent under polarized light
 - acute tubular necrosis,
 - interstitial nephritis,
 - Glomerular changes(sclerosis)

Table 2. Current and Potential Therapies of Secondary Hyperoxaluria

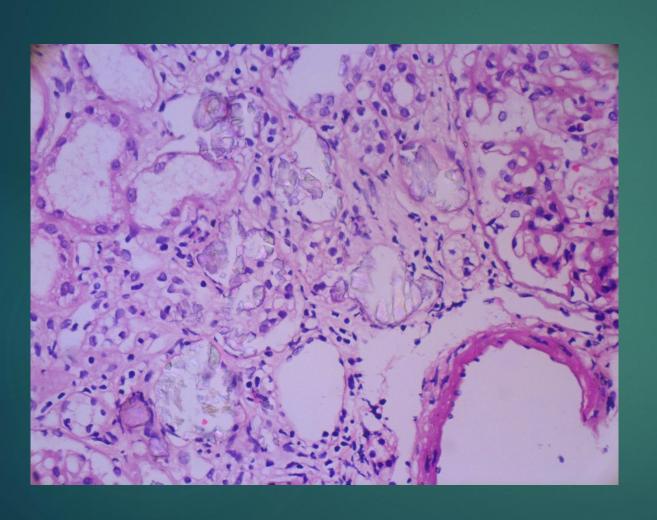
Treatment	Rationale	Supporting evidence
High fluid intake (urine output >2-3 L/d)	Reduces urine calcium oxalate supersaturation.	Reduces stone formation. 67,68
Low-oxalate diet	Reduces bioavailability of intestinal oxalate.	Reduces urinary oxalate excretion in small-sized studies; caveat: comparisons were based on a low- oxalate diet compared to a very-high-oxalate diet. 60,89,70
Low-fat diet	Reduces intestinal oxalate absorption (by increasing bioavailability of intestinal calcium).	Reduces urinary oxalate excretion in small studies.70,71
Normal-calcium diet	Avoid low-calcium diets, which lead to more free intestinal oxalate.	Reduces urinary oxalate excretion in small-sized studies. 69,72
Calcium supplements	Reduce bioavailability of intestinal oxalate and its absorption.	Reduces urinary oxalate excretion but may lead to hypercalciuria. ⁷²⁻⁷⁴ Calcium citrate may be more bioavailable than calcium carbonate. ⁷⁵
Cholestyramine	Binds intestinal bile acids, reduces diarrhea, and binds oxalate in vitro.	Studies show contradicting results.70,73,76
Oxalobacter formigenes administration	Increases intestinal oxalate degradation.	Reduces urinary oxalate excretion in rat model ^{61,77} and plasma oxalate levels in dialysis patients with primary hyperoxaluria (phase 2 study). ³⁵
Oxalate decarboxylase	Degrades intestinal oxalate.	Reduces urinary oxalate excretion in rat model ⁷⁸ and in phase 3 pilot study in humans. ⁶²
NLRP3-specific inflammasome inhibitor	Reduces crystal-induced kidney damage.	Reduces calcium-oxalate crystal-induced kidney fibrosis in mouse model.63

▶ Identification and management of the cause of secondary hyperoxaluria is also important to minimize the risk of recurrence of oxalate nephropathy after kidney transplantation.

RESEARCH PROSPECTS

 Urinary oxalate excretion may be a potential risk factor for progression in of CKD,

- urinary oxalate may be a potential mediator of CKD development and progression in individuals with diabetes or obesity
- whether lowering urinary oxalate excretion could be beneficial in slowing CKD progression?
- association between hyperoxaluria and faster decline in eGFR


Therapeutic considerations concerning patients with secondary hyperoxaluria on dialysis and during the peritransplantation period

REFERENCES

- ► Brenner Textbook of Nephrology
- ► American Journal of Kidney Diseases
- World Journal of Nephrology
- ► Kidney International

THANKYOU

Dept of Nephrology

